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INTRODUCTION 

Current design and performance prediction systems for axiai-flov 

fans and compressors compute fluid velocity distributions upstream, 

inside and downstream of each blade row. These velocity distributions 

are obtained using estimated values of loss in total pressure and 

turning of the fluid for each blade profile and cascade arrangement. In 

the past and at present loss and turning information have been largely 

based on accumulated empirical information from experimental research and 

on data correlations from such research. 

Attempts are being made to develop full flow field computational 

systems which predict the loss and turning for arbitrary blade profiles 

in cascades with given inlet flow conditions. Such systems, in addition 

to providing loss and turning information for design and performance 

prediction system, are also useful for other purposes. When advanced 

blade profile shapes for high performance turbomachines are under 

development, full flow field calculations provide an opportunity to locate 

the problem areas which produce poor performance. Also, insight can be 

gained into trends in the fluid mechanics of the flow. This insight can 

then help in the formulation and improvement of correlations which had 

previously been based on experimental data alone. 

Flow through an axial-flow turbomachine has frequently been thought 

of in terms of flow along S^, blade-to-blade surfaces and S2, hub-to-

tip surfaces. Figure 1. The assumption of and surfaces is not 

completely correct physically, but is one way to generate a solution 
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Figure I. The and surface. 

BLADE-TO-
BLADE SUR 
FACE 

Figure 2. An axially symmetric surface. 
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using the present state of the art in computation. It is hoped that in 

the future fully three-dimensional viscous models will be developed. In 

the meantime, progress can be made by calculating and understanding 

the flow field oa each of the two types of calculation surfaces. The 

work to be presented in this dissertation deals only with the flow on an 

axially symmetric blade-to-blade surface as shown in Figure 2, where 

there can be a density change, an axial velocity-density product change 

and a radius change from cascade inlet to outlet. The object of the work 

reported was to develop a method for computation of the flow field 

around an arbitrary blade cascade on an axially symmetric blade-to-blade 

surface, which takes into account the blade surface boundary layers, 

separation of those boundary layers, and mixing in the wake. The method 

predicts the overall turning and loss in the context of an inviscid-

viscous interaction scheme. 
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A REVIEW OF VISCOUS CASCADE MODELING 

Rationale for Inviscid-Viscous Flow Interaction 

The idea of dividing a flow problem into two separate regions, each 

having its own set of equations which are solved independently and matched 

at some comaon boundary, is not new. Prandtl suggested this type of ap­

proach by pointing out that in high Reynolds number flow around a body 

there is a thin viscous "boundary layer" region next to the body and a 

basically "inviscid flow" around that. The inviscid region is then 

dominated by pressure and inertial forces while in the viscous region 

pressure, inertial and viscous forces all play an important role. 

This simplification made the calculation of flow around an isolated air­

foil or an airfoil cascade possible, though the answer could only be 

approximate. However, as computational facilities have become much 

larger and faster, the question has arisen as to whether the boundary 

layer simplification is necessary. Without the use of the boundary layer 

simplification, a fully viscous solution might be obtained in which the 

complete set of equations for viscous flow would be solved over the 

entire flow region. 

The advantage of a fully viscous calculation is that if it were done 

correctly it should give a solution which matches the real flow. The 

disadvantages of this type of solution, which have greatly hindered its 

use, are that for high Reynolds number flow, the grid structure for a 

finite-difference solution is very complex and a large amount of computer 

time is necessary, as shown by Briley (1974), and that in laminar-
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transitional-turbulent flows the distribution of Reynolds stresses may be 

difficult to model. 

On the other hand an inviscid-viscous model has the advantage of 

being relatively simple, by allowing the use of already existing boundary 

layer calculation methods and inviscid flow calculation methods. The 

disadvantages in using ihe inviscid-viscous model.will most likely de­

termine the further usefulness of the inviscid-viscous approach. These 

are that it is sometimes difficult to match the viscous and inviscid 

solutions, especially when separation occurs, and that the pressure 

distribution may not match the real flow when only the displacement effect 

of the boundary layer on the inviscid flow is modeled. 

In this study it was decided to make a careful evaluation of the 

potential of inviscid-viscous airfoil cascade calculations by selecting 

current and reliable components for the inviscid and viscous calculations 

and concentrating on the development of an efficient and physically 

realistic interaction between the inviscid and viscous computation 

regions. In the following sections inviscid and viscous calculation 

methods are discussed to provide a background for the review of 

previously used inviscid-viscous interaction schemes for isolated air­

foils and cascades. 
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Inviscid Flow Models 

The equations of inviscid flow in two dimensions are as follows. 

3u _ _ _1 
3x ^ 3y p 3x 

„ + V |2 . - -i (1) 

3v Sv 1 &p . . 
U •»— + V -r— = - — (2) 
3x ^ 3y p 3y 

If the inlet flow to a cascade is uniform, and thus irrotational, and the 

flow is inviscid, Kelvin's theorem states that the flow is everywhere 

^  ̂ ,  , 3 v  3 u  
irrotational (- -r— = 0). 

ox dy 

The condition of irrotationality can be used in place of Equation 1 

3 3 
and 2 as follows. If Equation 1 is operated on by - and 2 by 

and both equations are added together, p is eliminated, and Equation 3 is 

obtained. 

Because the relation, - -|^ = 0, satisfies Equation 3, it also satis­

fies Equations 1 and 2, = q. can be used in place of equa-
dx ay 

tions 1 and 2. This equation with the continuity equation and the 

appropriate boundary conditions are used to obtain an inviscid solu­

tion. 

Methods of solution of the inviscid equations for cascade flow, 

however, have differed through history, as shown in Figure 3. This 

figure shows the historical development of each of four methods of 
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OOUKOHSKY (1910) 

' 1940 ' 

TMEODORSEN (1932) 
WEINIG (1935) 
BETZ (1948) 

GARRICK (1943) 
TRAUPEL (1945) 
HOWELL (1948) 

' 1950 ' 

' 1960 ' 
POLLARD & WORDSWORTH (1962) 
(P. AL) 

HALL t. THWAITES (1963) 
(P. AD 

CANTRELL AND 
FOWLER (1959) 

BAMMERT (1965) 
(P. AL) 

1970 
P = A PROGRAM EXISTS (AND IS INCOMPRESSIBLE, 

IRROTATIONAL AND PLANE 2-0 UNLESS OTHERWISE 
STATED) 

C •= ACCOUNTS FOR COMPRESSIBILITY 

R • ACCOUNTS FOR RADIUS CHANGE 

A •= ACCOUNTS FOR AXIAL VELOCITY DENSITY 
CHANGE 

F = IS WRITTEN IN FORTRAN 
AL = IS WRITTEN IN ALGOL 

FRITH (1973) 
(P. C, F) 

Figure 3a. History of the conformai mapping method 
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"1955̂  
SCHOLZ (1951) 
SCHLICIITING (1955) 

' 1960 ' 

'1970 ' 

MCLLOR (1959) 

POLLARD «, MORLOCK (1962) 

SHAALAN i HORLOCK (1968) 
(a) 

FÔTTNER (1972) 

HARTENSEN (1959) 

IHBACH 
1964) 

(P.C.R) 

MANI & ACOSTA . 
(1968)(A) 

1 
JACOB 4 RIEGELS (1963) 

WILKINSON (1968) 
(P. AD 

VAN DtN BRAEHBUSSCHE (1973) 
(C.A) 

GCLLER (1968) 

JACOB (1969) 

GELLEI! (1976) 

STARK & STARKE 
(1974) (A) 

A PROGRAM EXISTS (AND IS INCOMPRESSIBLE. 
IRROTATIONAL AND PLANE 2-D UNLESS OTHERWISE 
STATED) 

ACCOUNTS FOR COMPRESSIBILITY 

ACCOUNTS FOR RADIUS CHANGE 

F 
AL 

ACCOUNTS FOR AXIAL VELOCITY 
DENSITY CHANGE 

IS WRITTEN IN FORTRAN 

IS WRITTEN IN ALGOL 

Figure 3b. History of the singularity method 
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PERL (1947) 
ALPERT (1949) 

' 1950 ' 

' 1960 ' 

iW 

KATSANIS (1965) 
(1969) 

(P.C.A.R.F) 

SMITH & FROST (1970 » , b )  
(P.C.AL) 

WILKINSON (1972) 
(P.C.A.R.F) 

BUI DON & CARHICIIAEL (1971) 
(P.C.A.F) 

NOVAK (1975) 
(P.C.A.R) 

P = A PROGRAM EXISTS (AND IS INCOMPRESSIBLE, 
IRROTATIDNAL AND PLANE 2-0 UNLESS OTHERWISE 
STATED) 

C - ACCOUNTS FOR COMPRESSIBILITY 
R =• ACCOUNTS FOR RADIUS CHANGE 

A = ACCOUNTS FOR AXIAL VELOCITY DENSITY 
CHANGE 

F - IS WRITTEN IN FORTRAN 

AL » IS WRITTEN IN ALGOL 

Figure 3c. History of the streamline curvature method 
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' 1940' 

1950 WU & BROWN (1951) 
STANITZ & ELLIS (1952) 

1970 

KATSANIS (1969) 
(P.C.R.A.F) 

SANGER (1973) 
I 

DODGE (1973) 
I 

MILLER (1973) 

P = A PROGRAM EXISTS (AND IS INCOMPRESSIBLE, 
IRROTATIONAL AND PLANE 2-0 UNLESS OTHERWISE 
STATED) 

C = ACCOUNTS FOR COMPRESSIBILITY 

R = ACCOUNTS FOR RADIUS CHANGE 

A = ACCOUNTS FOR AXIAL VELOCITY DENSITY 
CHANGE 

F = IS WRITTEN IN FORTRAN 

AL = IS WRITTEN IN ALGOL 

MARSH (1968) 

SMITH & FROST (1970 a) 
(P.C.R.A.F) 

H O 

ISPAS (1974) 
(P.C.R.A) 

Figure 3d. History of the matrix method 
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calculating irrotational flow around arrays of airfoils. These methods 

are the conformai mapping method, the singularity method, the streamline 

curvature method, and the matrix method. Hansen (1976) described the 

basic concept behind each method and the history of the development of 

each method. It was felt that the best type of inviscid method to use 

to solve for the flow on an axially symmetric blade-to-blade surface is 

one which is general enough to include the effects of compressibility, and 

the affects of an axial velocity-density product change and a radius 

change across a blade row. The streamline curvature method and the 

matrix method are sufficient in these respects. 

There are several problems which arise when an irrotational flow 

model is used for airfoil or cascade calculations. At the trailing edge 

the irrotational flow requires a stagnation point, but in the real flow 

there is no such stagnation point. Therefore, the pressure field as calcu­

lated must be modified near the trailing edge to approximate the actual 

viscous pressure distribution. Also, as shown by Miller and Serovy C1975), 

given a fixed inlet angle to a cascade with rounded or blunt trailing edges, 

there are an infinite number of solutions possible unless the outlet angle 

is somehow fixed. This can be accomplished by setting equal estimated 

pressures on the suction and pressure surfaces or by fixing the position of 

the irrotational stagnation streamline at the trailing edge. Dodge (1973), 

Miller and Serovy (1975), and Ispas (1974) have used irrotational cascade 

flow models to determine turning in a cascade by applying some specific 

conditions in the flow field near the trailing edge. Dodge (1973) set 
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the velocities on the suction and pressure surfaces equal at the first 

grid (computation) points upstream of the trailing edge. Miller and Serovy 

(1975) set the velocities equal at the trailing edge after extending the 

velocities to the trailing edge in several different ways and varied the 

position of the stagnation point on the trailing edge circle. Ispas 

(1974) fixed the distribution of the axial velocity-density product . 

in the blade-to-blade direction from the pressure surface trailing 

edge to the suction surface trailing edge. All these calculations gave 

turning angles that were within 3 degrees of the experimental angles 

at low incidence. However, for flows when the experimentally-measured 

turning begins to decrease with an increase in incidence angle, the in-

viscid analysis alone shows no such decrease. This points to the fact 

that the inviscid model alone is not an adequate model, and that it is 

necessary to include viscous effects in the analysis. 

Viscous Flow Models 

Because viscous analysis of the flow through a cascade is necessary 

for the calculation of losses and has been suggested as necessary to ob­

tain the correct outlet angle, the types of viscous regions encountered 

on a blade in a cascade must be determined so that appropriate calcu­

lation models can be used. 

A qualitative look at what happens to the boundary layer on a blade 

as the incidence is varied is shown for a particular blade in Figure 4. 

This shows that there can be significant regions of laminar, transitional 

and turbulent flow on a blade and that a laminar separation bubble near 
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SUCTION SURFACE 

LAMINAR 

TURBULENT 

BUBBLE 

SEPARATED 

25" 30^ 35" 

AIR INLET ANGLE 

c/> 
o 
o. 
Q 
CC 
O 

PRESSURE SURFACE 

LAMINAR 

TURBULENT 

_L 

MEASURED 

T? 20̂   ̂# 3? 

AIR INLET ANGLE 
50" 

Figure 4. Seyb's (1965) measured boundary l^er development. (Profile 
10C7 41.8 C50, stagger angle 12.6^, pitch/chord » 0.76, Re-= 
1.5 X 10^, Ty = 2.6%.) from Horlock (1970). 
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the leading edge and turbulent separation at the trailing edge may develop 

as the incidence angle is increased. This suggests that it should be 

possible for any calculated boundary layer to be initially laminar, with a 

provision for transition to turbulent flow or laminar separation and 

reattachment, and to continue as turbulent flow with a provision for 

modeling a turbulent separated region. 

The equations of motion for the flow in a compressible boundary 

layer are given by White (1974, p. 626) 

v) = 0 (4) 

P ^ li ̂ P"" I7 " ̂ e^e dT + (5) 

+ (y 

p = pRT (7) 

dh = C dT (8) 
P 

with appropriate boundary conditions. The assumptions made in arriving at 

these equations are that the flow is two-dimensional, compressible, 

steady, and has a high Reynolds number, that the boundary layer is thin 

•with respect to the longitu'tnal direction and the longitudinal radius 

of curvature (if the surface is curved), and that the term pu v' is 
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the dominant Reynolds stress term. 

If these equations are assumed adequate for the viscous flow, the 

problem then is to model the Reynolds stress, pu'v', and the Reynolds heat 

flux, pv h , and to solve the set of equations for u,v,p, and T. Various 

models from the simple eddy viscosity concept to the more complex turbulent 

energy methods have been proposed. The eddy viscosity formulations have 

been adequate for the representation of most attached boundary layer 

flows. There has been recent interest in turbulence energy methods be­

cause of the failure of the eddy viscosity model in special cases such as 

suction or blowing and in other types of viscous flow such as jets and 

three-dimensional boundary layers. There are also many ways to solve the 

original equations. Prior to the computer, integral methods were 

developed, which were integrated forms of the original partial differen­

tial equations. The resulting ordinary differential equations were then 

solved in many different ways. As the computer made calculations easier, 

integral methods remained and were improved and methods were developed 

which solved the partial differential equations by representing the partial 

derivatives as approximate derivatives between calculation grid points. 

Finally, as stated by Fletcher (1974), differential methods of solving 

the governing conservation equations have been shown to be an effective 

way of predicting turbulent flows under a wide range of conditions, in­

cluding heat transfer and pressure gradients. Mixing length or eddy 

viscosity models have also been found to be remarkably general, being to 

a large degree independent of Mach number, heat transfer, and pressure 

gradient. 
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Inviscid-Viscous Flow Interaction Models 

Attempts have been made to calculate the flow around airfoils and 

through cascades by a number of authors. The method usually used has 

been an inviscid-viscous interaction type in which the potential flow 

field around the true profile shape is first calculated to obtain the 

surface pressures. These pressures are then used to calculate the 

boundary layers on the profiles, and the boundary layer displacement 

thickness is then used to modify the original profile shape. Beyond this 

initial similarity, the methods differ in the way the profile is thickened, 

in how the input to the boundary layer flow is obtained from the inviscid 

flow field, in the closure condition used to obtain the outlet angle, 

in the way separation is handled, and in the way matched inviscid-viscous 

solutions are obtained. In the following, methods used to calculate 

viscous flow around single aiTfoils will be discussed* Then methods 

used to calculate viscous flow through cascades will be described. 

Bavitz (1975), Callaghan and Beatty (1972), Morgan (1975), and 

Stevens et al. (1971) include the viscous displacement effect by adding 

the displacement thickness to an original isolated airfoil geometry to 

obtain a new geometry, while Dvorak and Woodward (1975), Jacob (1969) 

and Klineberg and Stager (1972) inject irrotational fluid along the 

profile surfaces in the inviscid calculation. When adding the displace­

ment thickness to the original airfoil geometry a problem arises which is 

seldom found when fluid is injected along the surface. If the boundary 

layer displacement thickness is not smooth (i.e., if there are second 
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derivatives with alternating signs along the surface), the new geometry 

produces a surface velocity distribution with unwanted peaks. This 

situation is helped by smoothing the displacement thickness distribution 

prior to adding it to the airfoil geometry. A brief description of the 

rest of each author's method follows. A summary of the inviscid-viscous 

iterative calculation procedures for isolated airfoils is given in Table 

1. 

Bavitz (1975) used the closure condition of continuous velocities at 

the trailing edge. He modified the surface pressures near the trailing 

edge by taking the maximum pressure surface on the rear portion of the 

blade and holding it constant from that point to the trailing edge. The 

most downstream point at which the calculated surface pressure is used 

on the suction surface is determined empirically. The pressure distribu­

tion from that point to the trailing edge is determined by fitting a 

second order polynomial to the surface pressures at that point, the point 

before it, and the pressure at the trailing edge on the suction surface 

(which is equal to the pressure on the pressure surface at the trailing 

edge). The displacement thickness in the separated regions is determined 

by the points 8 and 10 percent chord before separation ar.d an empirical 

relation based on the pressure coefficients. Interaction between the 

viscous flow and inviscid flow is produced by applying fully each new 

boundary layer thickness until the solution converges. Also the potential 

flow mesh is changed from a coarse, to a medium, to a fine mesh as the 

solution converges with an iteration limit on the coarse mesh of 6 

iterations, the medium, 4, and the fine, 3. 
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Table ]. Summary of inviscid-viscous iterative calculation procedures 
for isolated airfoils 

Inviscid-
Viscous 
Airfoil 
Analysis 

Inviscid 
Flow 

Calculation 
Method 

Viscous Region Calculation 
Boundary Layer Separated Flow 

Region 

Jacob 
(1969) 

Jacob 
(1969) 

Rot ta 
(see Jacob 

(1969)) 
Integral 

Injection to produce 
a constant pressure 
downstream 

S tevens 
et al. 
(1971) 

Stevens 
et al. 
(1971) 

Nash (1967) 
Integral 

The calculations were 
desensitized so that 
separation did not occur 

Callaghan 
& Beatty 
(1972) 

Douglas 
Ne umann 
Method 
Hess & Smith 
(1966) 

Cebeci & Smith 
(1968) 
Differential 

Empirical model 

Klineberg 
& Steger 
(1972) 

Steger & 
Lomax (1971) 

Klineberg & 
Steger (1972) 
Integral 

Specify the displacement 
thickness and calculate the 
pressure 

Bavitz 
(1975) 

Garabedian 
& Kom (1971) 

Bradshaw &Ferriss Extrapolation of the dis-
(1971) placement thickness 
Integration by 
method of 
characteris tics 

Dvorak & 
Woodward 
(1975) 

Dvorak & 
Woodward 
(1975) 

Gumpsty & Head 
(1967) 
Integral 

The source strength at the 
trailing edge was limited 

Morgan Oellers (1971) Modified 
(1975) Truckenbrodt 

(1952) 
Integral 



www.manaraa.com

19 

Interaction Method 
Displacement Thickness 
Effect Included By: 

New Displacement 
Thickness Level 

Type of 
Isolated 
Airfoil 
Tes ted 

Injection beginning at 
séparatien 

Single element 

Modifying the original 
profile shape 

6* + ̂  Ô*., 
3 new 3 old 

Multielement 

Modifying the original Full displacement 
profile shape thickness 

Multielement 

Matching velocities at the boundary between the 
inviscid and viscous flows 

Transonic symmetrical 
single element 

Modifying the original 
profile shape 

Full displacement 
thickness 

Transonic single 
element 

Injection 6* 
/ new 2 ^oid 

Multielement 

Modifying the airfoil 
thickness and camber 

3 new 3 old 
Multielement 
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Callaghan and Beatty (1972) used the DouglaS'^-Neimann potential flow 

method to calculate surface pressures which are not modified in the trail­

ing edge region. Separation is accounted for by a seniempirical model. 

The interaction is produced by adding the entire displacement thickness to 

the original blade geometry for two to three iterations. 

Morgan (1975) accounted for the effect of the displacement thick­

ness by adding it to the airfoil geometry in terms of thickness and 

camber. The closure condition of equal velocities on the pressure and 

suction surfaces becomes the condition of vortex singularities of equal 

strength and opposite sign on the suction and pressure surfaces at the 

trailing edge in this particular potential flow program. To insure 

proper convergence in four to five iterations the new displacement 

thickness to be applied to the original blade geometry is equal to 1/3 of 

the old displacement thickness plus 2/3 of the displacement thickness 

just calculated from the viscous program. 

Stevens et al. (1971) used the closure condition of vortex singulari­

ties of equal strength and opposite sign on the suction and pressure 

surfaces at the trailing edge and modified the surface pressure distribu­

tion of up to 32 points along the surface by discarding the last 2 points, 

curve fitting the 5 previous points and then obtaining surface pressures 

to the trailing edge. To insure proper convergence in several itera­

tions the new displacement thickness is equal to 1/3 of the old dis­

placement thickness and 2/3 of the newly calculated displacement 

thickness. 

Dvorak and Woodward (1975) obtained closure condition equivalent to equal 
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pressures at the trailing edge by requiring no flow normal to the air­

foil surface at the trailing edge and obtained surface pressures at the 

trailing edge by linearly extending the pressures from the last two points 

before the trailing edge. Convergence in two to five iterations was 

insured by adding a displacement thickness equal to the sum of 1/2 the old 

plus 1/2 the newly calculated displacement thickness. 

Jacob (1969) used the surface pressures from a potential flow solu­

tion to calculate the boundary layer and its separation point. Then three 

pressures, the pressure at the suction surface separation point, the 

suction surface pressure at the trailing edge at the displacement thick­

ness boundary and the pressure at the separation point on the pressure 

surface, are set equal by changing the circulation and adding a source 

distribution of appropriate strength beginning at the separation points, 

so as to produce a constant pressure downstream of the separation points. 

Klineberg and Steger (1972) were particularly interested in separa­

tion and therefore used a symmetrical airfoil at zero angle of attack so 

that the circulation was zero. The displacement thickness was applied 

to the inviscid flow and velocities were matched at the inviscid-viscous 

boundary. The boundary layer including a separated region was calculated 

by an integral relation. In the separated region the streamline angles 

of the outer inviscid flow were known and with these the boundary layer 

equations were integrated to obtain the pressure distribution. Con­

vergence for the case run was obtained in 12 iterations. 

The methods used to calculate the flow through airfoil cascades 

are very much similar to those just described for single airfoils. 
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Again it is found that some authors change the original blade geometry to 

account for the displacement thickness (Speidel (1954), Fottner (1972) 

and Sanger (1973)), while others (Fottner (1968), and Geller (1972)) 

use injection along the blade surface. A summary of the inviscid-viscous 

iterative calculation procedures for airfoil cascades is given in Table 

2 .  

Speidel (1954) obtained a potential flow solution through a 

cascade by modeling the blade thickness with a source distribution 

and the camber line with distributed vortices. The boundary layer was 

calculated by the method of Truckenbrodt (1952) and any separated region 

was modeled by Speidel's own method. The camber line and the turning of 

the cascade are modified by the difference in the suction and pressure 

surface displacement thicknesses and the potential flow though the 

cascade was again calculated. Finally, the loss and turning were calcu­

lated. 

Sanger (1973) used the criteria of equal pressures on the suction 

and pressure surfaces to obtain an initial inviscid solution. Then 

using the surface pressures, boundary layers were calculated and the dis­

placement thicknesses were added to the original blade profile. The 

inviscid calculation was then carried out around the thickened profile 

with the outlet angle determined from the average of the thickened 

profile surface angles on the suction and pressure surfaces where the 

profile joins the trailing edge circle. The thickened profile beyond 

separation was obtained by continuing from the separation point to the 

trailing edge in a smooth extrapolated curve. The additional loss 
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Table 2. Summary of inviscid-viscous iterative calculation procedures for airfoil cascades 

Inviscid-
Viscous 
Cascade 
Analysis 

Speidel 
(1954) 

Inviscid Viscous Region Calculation 
Flow Method 

Calculation Boundary Separated 
Method Layer Flow Region 

Interaction Method 

Speidel 
(1954) 

Truckenbrodt 
(1952) 

Integral 

Displacement 
Thickness 
Effect 

Included !)y 

0 Calculated Modifying the 
at the Camber line 
trailing shape only 
edge 
Speidel 
(1954) 

New 
Displacement 
Thickness 
Level 

Cascade Type 
and 

Blade Type 
Tes ted 

2-D Decelerating 
NACA 0010 

0015 
0020 

Fottner 
(196 8) 

Fottner 
(1972) 

Schlichting 
(1955) 

Shaalan & 
Horlock 

(1968) 

Scholz (1960) 
Truckenbrodt 
(1952) 
Integral 

Scliolz (1960) 
Truckenbrodt 
(1952) 
Integral 

None 
described 

ll=cons tant, 
correlation 
for 0 change 

Injection 

Modifying 
the origi­
nal profile 
shape 

Full dis­
placement 
thickness 

Full dis­
placement 
thickness 

2-D Decelerating 
NACA 65-(12 A^q)06 

2-D Decelerating 
NACA 65-0010 with a 
circular Camber line 

N> 
w 

Geller 
(1972) 

Mar tensen 
(1959) 

Walz (1966) 
method II 
Integral 

Injection to Injection be-
produce a 
cons tan t 
downstream 
pressure 

ginning at 
separation 

2-D Decelerating 
NACA 65-(4A2l8y)10 

65-(BA^Ig^)10 
65-(l2A2l8b)10 

Accelerating,Camber 
angle = 110° 

Sanger 
(1973) 

Katsanis 
(1969) 

McNally (1970) Manual ex- Modifying the 
Integral trapolation original pro-

Full dis- Compressor stator 
placement double circular arc 
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because of separation is accounted for by the method of Speidel (1954). 

Fottner (1968) set the trailing edge pressures equal to obtain the 

first inviscid surface pressure solution which produced the first boundary 

layer solution. The displacement thickness was then added to the pro­

file as a source distribution, producing a finite trailing edge thick­

ness. The potential flow around this profile is again calculated and 

the values of surface pressure used to obtain second boundary layer solu­

tion. This procedure then continued to convergence. 

Geller (1972) applied a method similar to the airfoil method of 

Jacob (1969) to cascades. Initially the boundary layer separation point, 

locations on the suction and pressure surfaces were estimated. The 

potential flow was then calculated with the addition of an after-sepa­

ration source distribution of sufficient strength to produce a constant 

pressure from the separation point to the trailing edge. The trailing 

edge pressures (on the suction and pressure surfaces) were then required 

to be equal and thus formed a closure condition which fixed the outlet 

angle. The surface pressures from the first potential solution then served 

as input for the boundary layer calculation which gave a better estimate of 

the separation points. With these better estimates of the separation 

points, the cycle was again repeated and a final solution was then 

obtained. 
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PRESENT BLADE-TO-BLADE COMPUTATION METHOD 

The present model for the calculation of the viscous flow through a 

blade cascade using an inviscid-vis cous interaction technique consists 

of a computer program for the calculation of the inviscid flow through 

the blade cascade, a computer program for the calculation of the 

viscous region near the blades, and a computer program to interact the 

previous two in such a way that matched viscous and inviscid solutions are 

obtained. 

Inviscid Flow 

The computer program for the calculation of the inviscid flow was 

selected because of its generality. It includes compressible effects and 

changes in the axial velocity-density product. This program written by 

Katsanis and McNally (1969) solves 

2 ^  _  1 _  1 3 p 3 i  r S in  g  _  L_  9 (bp )  . ^^2bpw 

2 . . 2  - 2 2 p 38 38 ^ r bp 9m ^3m w " 
r da dm r 

which is the equation for irrotational, compressible flow, written in 

terms of a stream function, for an axially symmetric surface. Figure 2. 

This program, TSONIC, uses a rectangular grid. Figure 5, to obtain the 

points at which Equation 9 is solved. The position of the upstream and 

downstream boundaries and the size of the rectangular mesh were determined 

according to suggestions given by Miller (1973) and their particular values 

will be discussed in the fourth section. The boundary conditions for the 
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Figure 5. Grid system used by Katsanis and McNally (1969), 

c /  
SOLUTION REGION 

Figure 6. Two dimensional solution region. 
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solution region, Figure 6, are as follows. There is a fixed flow rate, 

w, through the passage. The inlet flow angle along AH and the outlet 

flow angle along DE are known. AB, HG and CD, FE are periodic such that 

the solutions along AB and KG are the same and along CD and FE are the 

same. Initially both blade surfaces, EC and GF, have constant, though 

different, stream function values along the surfaces. 

When one wishes to include the displacement effect of a boundary 

layer on the inviscid flow around the blades, it is found that this 

displacement effect can be modeled by injecting fluid (in the inviscid 

calculation) from the blade surface along the blade as suggested by 

Lighthill (1958). This is done by varying the value of the stream-

function boundary conditions along the blade. The streamfunction is 

normalized by w, the total weight flow through the passage, so that 

initially along EC, ip=0 and along GF, ip=l. When fluid is injected, 

beginning at the first vertical mesh line downstream of the leading edge, 

these boundary conditions are changed to account for the extra fluid. 

upb6 * 
The extra amount of fluid is Alp = , where u,p,b, and 5* are 

respectively the fluid velocity, the density, the streamsheet thickness 

and the displacement thickness at the point along the surface where ip 

uDbô * 
is being calculated. Then along BC, '~p —— , and along GF, 

= 1 + . There is also injection at the trailing edge to account 

for the finite thickness of the trailing edge, Appendix A. The extra 

mass was added to the fluid stream by injection continuing downstream 

and is accounted for along the periodic boundaries and at the downstream 

boundary. 
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Viscous Flow 

The boundary layer program used in the present model is a version of 

the Albers and Gregg (1974) program which was recoded by Albers and 

Gregg to more efficiently use computer storage space with no change in 

the fluid mechanics. It was then modified in the present method to calcu­

late through laminar and turbulent separation and to link with the 

interaction program. The Albers and Gregg program was selected because 

it includes laminar, transitional, and turbulent boundary layer calcu­

lations which, as suggested previously, all may be required. Because 

the Albers and Gregg method is a differential as opposed to an integral 

boundary layer method, it provides an opportunity to calculate some 

regions of separation. Figure 7 compares the calculated boundary layer 

with cascade results of Peterson (1958) where his surface pressure data 

is used as input to the boundary layer program, with an initial boundary 

layer thickness obtained from a method which is described in the follow­

ing paragraph. The calculation and the experimental data match fairly 

well, particularly at the transition point where there is a definite change 

in slope. 

Initial boundary layer 

Although it is possible to start the boundary layer calculation 

within the program from the stagnation point, because of the difficulty 

of correctly placing on adequate number of points in the steep velocity 

gradient near a stagnation point, the method of Schlichting (1968, p. 87), 

was used to provide an initial boundary layer thickness. For flow near 
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Figure 7. Calculation using Albers and Gregg (1974) program with experimental 
pressure Input compared with the experimental data of Peterson (1958). 
65-410 cascade, m^ = 0.1, Re^ = 245,000, y = 45°, a = 0.78, c = 124 mm. 
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the stagnation point of a flat plate placed normal to the free stream 

Schlichting derived 6=2.4/v/a and a distribution of as a function of 
c 

/a/v y wlicre o is obtained from U = ax. When this method cf calculation 

is applied to the leading edge of an airfoil, the stagnation point loca­

tion and a velocity and its location somewhat downstream of the stagnation 
dL\ 

point must be known to obtain the average velocity gradient, a = . 

A problem arises here in the inviscid calculatic. In that the mesh is not 

fine enough to locate the stagnation point. As shown in Figure 8, the 

stagnation point is then estimated and the distances to the first points 

where the velocities are known are estimated using the inlet angle and 

leading edge radius to obtain the arc length as shown. This information 

gives an estimate of the velocity gradient, a, which in turn gives an 

estimate of the initial boundary layer size at that location. It is pos­

sible CO use other programs to obtain a more detailed solution near the 

leading edge, but this involves a considerable increase in computational 

effort. The boundary layer thickness and velocity distribution are then 

calculated in the interaction program and used as input to the boundary 

layer program. 

Calculation step sizes 

In the Albers and Gregg (1974) program, the input velocities are 

specified at calculation stations along the profile surface length s. 

In regions of steep velocity gradients or rapid boundary layer growth it 

is important to closely space the steps. The sizes of the steps for the 

present model were chosen as As = 46* for the first ten steps from the 
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Figure 8. Estimation of the stagnation point location 
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leading edge on the succion and pressure surfaces (where the pressure 

gradient is very steep), as As = 186* from the tenth step to a point just 

downstream of half of the length s of the blade, and as As = c/60 to the 

trailing-edge end of the blade surface. 

Transition 

Transition was calculated using the model already built into the 
6*U 

Albers and Gregg program. The transition region, begins when ^ ̂  becomes 

greater than the critical Reynolds number and ends when it becomes 

greater than the fully turbulent Reynolds number, where both the 

critical and the fully turbulent Reynolds numbers are obtained from empiri­

cal relations within the program. Within the transition region the ef­

fective viscosity is varied from V at the beginning to v+v^ at the 

end of transition, is obtained from a two-layer algebraic model 

described by Herring and Hellor (1972). 

Laminar separation 

The change from laminar to turbulent flow can also occur when there 

is a laminar separated flow region. The laminar separation model in the 

Albers and Gregg program was not considered adequate and was replaced as 

follows. Horton (1967) suggested a method for prediction of reattach­

ment and boundary layer growth across the separated region. Roberts 

(1975) used Horton's method, compared it with experimental data, and 

modified some constants to obtain a method which matches his own experi­

mental data. Robert's (1975) method is used for the calculation of 

regions of laminar separation as follows. At the separation point, 
ue 

s , the Reynolds number based on the momentum thickness, Re„ = — 
sep D V 

sep 
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IS known. Then knowing Rc; and tne inlet Taylor s turbulence factor, 
D 
Sep 

(TF), 2^ (See Figure 9) can be calculated as 

3 (2.5 X 10^) log _ (coth (TFxlO) / / xvcq 
sep 10 6 

= 9^2^(2.5 X lO^jlog^Q (coth (TFxlO))/Reg (10) 
sep 

is the region after separation where the boundary layer thickness 

grows rapidly and the velocity is assumed to remain constant. In a 

separated boundary layer, where the pressure gradient is zero, the 

momentum thickness remains constant so that, 

9sep = 8;;. (11) 

From the transition point to the reattachment point, the velocity is 

modeled as a linear distribution (Figure 9) and 

B (l-Ûe ) 

^ 
e i 
r 

where 

em 

and the momentum thickness at reattachment is 

U ^ 4Hem u (1-U ) 
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sSEPARATION 
X TRANS TION 
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0 . 6  0.4 0.8 0 . 2  
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Figure 9. Suction surface pressure distribution on a 65-(12)10 blade 
cascade corresponding to the calculation point Re = 220,000 
in Figure 34 showing the idealized perturbation o? the pressure 
because of laminar separation. 
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where 

= 0.035, H = 1.5, A = -0.0059. 
dm em K 

— 4 
However, it can be seen that if in Equation 12 (U^ -C^) approaches 0, 

by U decreasing, approaches infinity. In some cases can produce 
r 

a reattachment point beyond the trailing edge of the blade. This 

describes a failure of the reattachment process called bursting by 

Roberts (1975). In these cases the laminar separation produces such a 

large effect on the inviscid flow that the inviscid velocity distribution 

can not be simply modified as in Figure 9. 

The present calculations use Roberts (1975) model for laminar 

separated regions modified as follows to include the bursting case. 

Equations 11, 12, 13 and 14 are repeated below with the appropriate 

constants inserted. The equations are otherwise unchanged except as 

noted below. 

£, = 0 (2.5 X 10^)log,„(coth(T x20))/Re„ (14) 
i sep iu u o 

• sep 

sep tr 
(15) 

5. = 6 X 85.227 x (l.-U ) / (U *-.497) (16) 
2 sep e e 

r r 

6=0 (I + .005833 X (1.-Û 
P sep e^ 

Equation 14 is slightly different from Equation 11 in that TF was replaced 

by 2(Tu) according to Roberts'(1973) Figure 84. 
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When separation occurs, s , R Tu, and 6 are known. is 
sep Sep 1 

found from Equation 14 which gives the first estimate of the reattachment 

as s + = s. . Then the velocity is found at s and Equation 16 
sep 1 r r ^ 

is used to find . Next, s + 5,^ + £„ = s gives a new estimate for 
2 sep 1 2 r 

the reattachment position, the reattachment velocity, and Iteration 

continues until 2^ is converged upon. However, as noted previously. 

as u approaches 0.497 in Equation 16, grows without bounds and the 
r 

calculated s^ extends beyond the trailing edge of the blade, which indi­

cates bursting. In the present computations, is limited in size to 

0.7 (£^) based on Roberts (1973), Figure 19c. Also, is required to be 
r _ 

greater than 0.841 to keep the value of £. positive. Then knowing U , 
"r 

JZ-p, and 6 , Equation 17 gives 0^. The velocity distribution, ̂  
e 

whic is quite similar to profiles given by Horton (1967), is used with 

0^ and 5* = 3.0 (0^) to begin the turbulent calculation of the rest of 

the boundary layer, beginning at the reattachment point. 

Turbulent separation 

In the present model the Albers and Gregg program is extended to calcu­

late separated boundary layers in a way similar to the method of Carter and 

Wornom (1975). In the Carter and Wornom procedure the displacement thick­

ness is prescribed, but in the Albers and Gregg program used here the edge 

velocity is prescribed. Carter and Wornom (1975) first followed Reyhner 

and Flugge-Lotz (1968) by neglecting the streamwise convection term in the 

boundary layer equations when there is backflow (i.e., in pu + pv = 
os dy 

PgU ̂  "iy' < 0, pu=0). They also suggested that 
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there was a lack of diagonal dominance in the tridiagonal system of equa­

tions to be solved within the boundary layer program. In the Albers and 

Gregg (1974) program the equation 

is solved at each forward marching step by evaluating the a'^s with 

the best estimate of the f solution, then solving for the new f's and 

updating the a's until an f solution is converged upon. However, when 

is not dominant, the f solution diverges instead of converging. 

Comparing Equation 18a with that of Carter and Wornom (1975), the 

modified equation to prevent divergence becomes 

where f is the value of f at j from the previous iteration on f. 
JP 

NcZice that the original and the modified equations are the same at con­

vergence when f. = f! . An example result of this modification is shown 
] JP 

in Figure 10. The calculation does not diverge even though 6* is in­

creasing at a very large rate. The magnitude of the reverse flow (•^) 
e 

at the last 3 s steps is about 20% of the freestream value. 

There are cases where, because of the large backflow regions, the 

calculation does diverge. In these cases a different calculation method 

was used to give a solution from the point of divergence to the trailing 

edge. At the last acceptable s step before divergence the displacement 

and momentum thicknesses are used to start the new calculation which 

is derived from the Von Karman integral boundary layer equation, 
T T  

+ (2+H)0u-^ = —^ . In the separated region we assume — = 0 and 
ds QS p p 
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Figure 10. Calculated boundary layer growth in a separated region using 
the Albers and Gregg (1974) program and the Carter and 
Womom (1975) modification near the trailing edge of the 
65-41C blade cascade corresponding to an intermediate calcu­
lation for the point a = 12.4° in Figure 23. 
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H is known. However, H is not known, but is known to increase in a 

separated zone. Therefore, H at the trailing edge, in an increasing 

pressure gradient is approximated by H at the last acceptable point 

plus 1.0. The H's at points between the last calculated acceptable 

point and the trailing edge point are obtained by linear interpolation. 

H in a decreasing pressure gradient is held constant after separation. Set­

ting T /p =0 the Von Karman integral equation becomes 4^= ® . 
w & -1 ds u ds 

This equation is solved for 6 and 5*, knowing H and u as functions of 

s as shown in Appendix B. Figure 11 shows how 5* and 6 were extended in 

one particular case. 

Inviscid-Viscous Flow Interaction 

The present method of interacting the inviscid flow solution and 

che viscous (boundary layer) flow solution is similar to that of Brune 

et al. (1974). It is different from the previous methods of interacting 

inviscid and viscous flows which obtain an inviscid solution and a 

corresponding viscous solution, apply the first trial boundary layer 

displacement thickness to the blade surface to obtain new inviscid and 

viscous solutions and continue until a convergent result is reached. To 

insure convergence, the latter methods often require artificial damping 

obtained by using a reduced displacement thickness, 5* = q6^^^ + 

(l-q)ô , where q is less than 1. Figure 12 shows the difference be-new ^ ® 

tween these two methods. The two lines on the figure are the inviscid 

line, which shows how a typical local surface velocity changes with a 

change in displacement thickness in the inviscid solution, and the 
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Figure 11. Continued calculation in the separated region after 
the failure of the normal boundary layer calculation 
scheme on the suction surface of a 65-(12)10 blade 
corresponding to the calculation point a = 20.7° in 
Figure 28. 
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Figure 12. Interaction between the suction surface viscous velocity 
and boundary layer displacement thickness at the trailing 
edge. 



www.manaraa.com

41b 

viscous line, which shows how the displacement thickness changes with a 

change in velocity in the viscous solution. The full boundary layer 

added method is shown by the primed numbers and the dashed line, while 

the present method is shown by the unprimed numbers and solid lines. The 

first produces very slow convergence and may at times be divergent while 

the second, which shows the idea behind the method of Brune et al. (1974), 

converges more rapidly. Because Brune et al. used the simple test case 

of a flat plate in laminar flow, they were able to obtain the necessary 

slopes to construct a diagram similar to Figure 12 . at all the calcu­

lation points along the plate. The present test cases are considerably 

more complex and the governing equations do not lend themselves to the 

simple formulations of Brune et al. It was then decided that in the 

present interaction one diagram similar to Figure 12 corresponding to 

the trailing edge point would be used. This assumes that if the in­

jected and calculated displacement thicknesses were then matched at the 

trailing edge, the injected and calculated displacement thicknesses 

along the entire blade will match. 

In the present model, Figure 12 is supplemented by Figure 13a, which 

is used to determine the outlet angle, ^, by setting the suction and 

pressure viscous surface velocities equal. Combining Figure 12 and 

Figure 13a, one obtains Figure 13b, which shows how the injected and the 

calculated boundary layers are set equal (the intersection of the viscous 

and inviscid lines) and how the suction and pressure surface velocities 

are set equal (by changing 3^ ^ until Ug is equal to U^). 

Figure 14 shows an overall flow chart for the computer program of the 
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PRESSURE SURFACE 

a u _  

SUCTION SURFACE 

^0 

a) Relationship between the viscous velocities and the outlet angle 
at the trailing edge. 

INVISCID 

VISCOUS 

"0,1 
INCREASING 

^s 

Interaction between the suction surface viscous velocity and boundary 
layer and the outlet angle. 

Figure 13. Development of the interaction between the suction 
surface viscous velocity and boundary layer dis­
placement thickness and the outlet angle at the 
trailing edge. 
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READ INPUT 
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PRESSURE SURFACE 
BOUNDARY LAYER 
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VELOCITIES 
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LOSSES 

SUCTION SURFACE 
BOUNDARY LAYER 

INVISCID 
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SURFACE VELOCITIES 

PRESSURE SURFACE 
BOUNDARY LAYER 

INVISCID SOLUTION 

TRAILING EDGE 
VELOCITIES 

SET BOUNDARY CONDITIONS, i .  
ca l c  

INTERACTION 
CALCULATE A S, AND A 6 

UNCONVERGED f 

• S. . + AS /2 
SET BOUNDARY CONDITIONS. „ . 

Figure 14. Flow chart of the conçuter program used in the 
present model. 



www.manaraa.com

44 

present model. The general method will first be discussed as a whole, 

then the specifics of the method and the equations of the interaction will 

be discussed. 

First, the input which describes the test case is read in. Then the 

inviscid flow over a bare blade with the guessed outlet angle is calcu­

lated and the first estimate of the outlet angle is obtained by varying 

the outlet angle until the pressures on the suction and pressure surface 

are approximately equal at the trailing edge. Next, the suction surface 

velocities are used as input for the boundary layer calculation. Then one-

half of the suction surface boundary layer displacement thickness is in­

jected along the suction surface in the inviscid solution and the suction 

surface and pressure surface velocities are obtained followed by the 

boundary layers. At this point the interaction loop is entered and changes 

in the injected suction surface displacement thickness and the outlet 

angle are calculated. The new displacement thickness distribution is 

then injected along the suction surface and the most recent pressure 

surface displacement thickness is injected along the pressure surface to 

obtain the inviscid solution and the surface pressures. This cycle, in­

jection, calculation of the inviscid flow, calculation of the suction 

surface boundary layer, and injection of a better estimate of the suction 

surface displacement thickness proceeds until convergence or eight itera­

tions. Then the pressure surface boundary layer is calculated using the 

most recent pressure surface velocity distribution. Finally, if addi­

tional cases with the same geometry are to be run they are read, in and 

the solution from the previous case is used as the starting solution for 
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the new case. This discussion has given an overall view of the inter­

action. Next, individual components of the interaction calculation will 

be described. 

Trailing edge closure condition 

As mentioned previously, some criterion is needed to determine 

the outlet angle. Experimental data has proven to be very helpful 

in resolving this problem. Preston and Sweeting (1943) show in Figure 

15 the distribution of pressure along a line normal to the chord at the 

trailing edge of a Joukowski airfoil for various incidence angles. In 

all cases there is a definite pressure rise through the viscous layer on 

the suction surface and the magnitude of the pressure rise is as high as 

0.05 of the free stream dynamic pressure. Oliver (1976), in Figure 16, 

shows the normalized velocity measurements behind a stationary C4 blade 

in a compressor. The freestream velocities on the two sides of the 

blade differ by about 10%. This also shows that there is a pressure 

change across the viscous layer. On the basis of these data, it 

appears that the static pressure through the viscous layer at the 

trailing edge is continuous and that the pressures at the edge of the 

boundary layers on the pressure and suction surfaces are not in general 

equal. The condition of equal viscous pressures at the trailing edge 

on the suction and pressure surfaces will be used to determine the outlet 

angle. 
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0.10  — 
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i VISCOUS LAYER 
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PRESSURE SURFACE 
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Figure 15. Pressure distributions normal to the flow at the trailing 
edge of a simple Joukowski airfoil for several incidence 
angles from Preston and Sweeting (1943) . 

NORMALIZED 

VELOCITY 

FRACTION OF THE SPACING 

Figure 16. Velocity distribution 0.04 chord downstream of a C4 blade 
in the inlet guide vane of a compressor in the circumferential 
direction after Oliver (1976) where Re = 10^, a = 1.0. 
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Viscous surface pressures 

The previously seen pressure gradient across the viscous layer 

normal to the streamlines indicates that the streamlines in the viscous 

layer are curved. Spence (1954) recognized this and calculated an esti­

mate of the pressure change through the viscous region using the streamline 

curvature of the inviscid flow field and the viscous velocity distribu­

tion of the boundary layer solution. Then knowing the pressure change 

through the boundary layers, the pressures at the edge of the suction 

surface and pressure surface boundary layers can be set to differ by 

that calculated pressure change. Wattendorf (1935) showed that 
2 
could be used to calculate the pressure along the normal to 

streamlines if u and r are known. Goldstein (1938) suggested that over a 

curved surface the boundary layer equations in two dimensions are 

dy 

= - i i? (21) 

These are the normal boundary layer equations (turbulent flow can also 

be considered by adding the Reynolds stress term to the laminar shear 

term as in Equation 5) except that Equation 19 is new. Equation 21 is 

the same as the equation used by Wattendorf (1935) in his curved channel 

experiments and Spence (1954) in his analytical calculations. Therefore 



www.manaraa.com

48 

in the present computations, the change in pressure from the edge of the 

boundary layer to the surface (along the blade on both suction and pressure 

2 
surfaces) was calculated using Equation 21. The values of u" and p are 

known from the boundary layer solution. However K, the curvature of 

the streamlines, is obtained in a manner similar to Spence (1954), from 

the streamline curvature of the inviscid flow. However, in the present 

computations, the curvature of the inviscid streamlines at the edge of 

the boundary layer is considered to be the curvature of the streamlines 

in the boundary layer and is considered to be constant through the 

boundary layer. Therefore the surface pressure is obtained by finding 

the static pressure and the streamline curvature at the edge of the 

boundary layer, then integrating Equation 21 from the edge to the surface 

knowing the velocity distribution in the boundary layer, and finally 

converting that pressure into an equivalent velocity (knowing the total 

pressure and assuming isentropic flow), U, which is called the viscous 

surface velocity and was used as input to the boundary layer program. 

This method of obtaining surface pressures was used not only for the 

trailing edge point, but also for all points on the rear one-half of the 

blade surface. 

Figure 17 shows part of a blade in the inviscid computational 

mesh. The surface pressures are calculated at the points where the blade 

surface and the vertical mesh lines intersect, for example, at point A, 

Figure 17. Initially a line is extended normal to the surface at A 

a distance of 6 to B where 6 = ô*(H+l)/(H-1) is used to obtain 6 from S* 
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MERIDIONAL 

Figure 17. Grid points used for the extension of the 
pressure to the surface. 
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and H (Appendix C). Then keeping ô fixed the direction of the streamline 

at B is obtained from the inviscid solution, a new angle for the line AB 

is obtained, normal to that streamline, and the position of B is changed 

until AB is normal to the streamline at B. When the point B is known, 

the velocities at the four mesh points immediately beyond B, away from 

the blade, are linearly extrapolated to obtain the velocity (also the 

pressure) at point B (Appendix C). Then the streamline curvature is 

obtained using velocity derivatives in the direction normal to the 

streamlines (Appendix C). Finally, Equation 19 is integrated across the 

boundary layer to obtain the difference in pressure across the boundary 

layer and the surface pressure is used to obtain a viscous surface 

velocity (Appendix C). Therefore knowing the inviscid solution and the 

boundary layer solution (6* and H), the surface pressures and viscous 

surface velocities can be obtained for use in the boundary layer calcu­

lation and the matching of the pressures on the surface at the trailing 

edge to fix the outlet angle. 

Outlet angle iteration 

While investigating the method of setting the trailing edge surface 

pressures equal to obtain an outlet angle. Figure 18 was obtained. The 

figure is the result of increasing the inviscid outlet angle 6^ ̂ (the 

downstream boundary condition) and then decreasing it (as shora by the 

arrows). U -U is the difference between the viscous suction surface 
s p 

trailing edge velocity and the viscous pressure surface trailing edge 

velocity. Figure 18 shows that if 3 is continuously increased (or 
o,I 
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U S • CALCULATION POINTS 
0.4 

m/s 

45.5 45.4 45.6 45.3 

deg. -0.1 

-0 .2  

Figure 18. Hysteresis in the velocities at the trailing edge as 
the outlet angle is increased then decreased in the 
inviscid solution for the 65-410 blade cascade with 
no surface injection. Y = 45°, a = 0.78, = 0.1, 
a = 9.3°, c = 124 mm. 
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decreased) and the most recent p's and '^'s are used as a starting point 

for the next 3 solution, the relationship of U -U. to 3 t basically 
0,I s p Oj 1 

linear and when the increment of 3 , changes direction (point A), a 
o, 1 

hysteresis loop appears. This is probably caused by incomplete 

matching of the stream function solution with the exact answer, though it 

did converge within the specified tolerances. The offset of the two 

lines is about 0.23 degrees and may cause problems when trying to exactly 

converge on a solution for the outlet angle. 

Simultaneous displacement thickness and outlet angle iterations 

The equations used to obtain a matched solution of the trailing edge 

values of the injected displacement thickness and of the displacement thick­

ness which was calculated from the boundary layer computations and equal 

pressures at the trailing edge are shown as follows. 

95* 
- W '"s (22) 

s 

3Ii 8U 

au. au 

= 3^ A8o,l + ssf'^s.v - 3^,1 + ASg) (24) 

U 4- AU = U + AU (25) 
P p s s 

This system of four equations has four unknowns, AÔ*, Au , Au » and A3 
s s p 0,1 

The variables 6* , 6* U , and U are readily obtained at the trailing 
s.v' s,I p s 

edge from the latest inviscid and viscous calculations as shown in Figure 

12. S* is the value of the suction surface displacement thickness at 
s,v 



www.manaraa.com

53 

the trailing edge calculated from the boundary layer equations. 6* ^ is 

the value of the suction surface displacement thickness at the trail in# 

edge used to calculate the injection on the blade. 6 *  -  6 *  ^  +  A5* 
s,v s,I s 

is the change in the injected displacement thickness and ^ is the 

change in the inviscid outlet angle. U.^- and are the pressure and 

suction surface viscous velocities. 
3U 3U 

The derivatives, — and — , shown in Figure 13a, are calculated 
3Gb,I 3Go,l 

within the subroutine which solves for the initial estimate of 8 ^ by 
o,I 

setting Ug and equal. The input value of 6^ ^ is incremented by 

0.1146 degrees (0.002 radians) four times in the direction of U_-U = 
S p 

0, as shown in Figure 19, points 1-5. Then using the average slope from 

3-4-5 and the value of U -U at 5 the B _ for U -U = 0 is estimated, 6. 
s p o,I s Pgu 2^ 

At the same time that g ^ is being converged upon, — and — are 
O'l 3Go,I 3Go,I 

calculated as an average using points 3-5 and are finally normalized by 

dividing by the corresponding suction or pressure surface velocity so 

that this slope can be used at any outlet velocity level. 

After the outlet angle is initially set and the surface pressure 

calculated, the suction surface boundary layer is calculated and 1/2 of 

the boundary layer displacement thickness is injected. The change in the 

suction surface trailing edge viscous velocity produced by this injection 

^The input value of 6 needs to be a reasonable value but may still 
0,1 

be 5 to 7 degrees away from the initial calculated value of j. Tf the 
input gg J is in error more than 5 degrees, it is suggested that the 
initial 3 ^ calculation should be carried out (which is presently being 
described;'and that initial calculated value qf S ^ be used as the input 

5U o'U 0,1 
value to insure a good estimate of irs and —. 

op -r 02 y 
0»1 O,1 
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Figure 19. Iterations during the initial calculation of 3^ j 
for the 65-(12)10 blade cascade calculation ' 
in Figure 30 as Ug-Up is set nearly equal to zero. 
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is used to calculate (Figure 12) , which is also normalized by li . 
3TJ s ^ 

The term in Equation 24 was considered to be unimportant and was set 
s 

equal to zero. 
36* 

Finally, (Figure 12), the ratio of the change of the displace-
°%s 

ment thickness with a change in input velocity is calculated knowing 

Ug(s) and 6*(s), the boundary layer input and output. Normally as 

shown in Figure 20, the boundary layer calculation proceeds from points 

A to B, obtaining 6* and 8 from an input U . However, suppose one were 

to proceed from A to C, in a case where remains constant, =0, and 

the boundary layer is near separation, T =0. The Von Karman integral 
T ^ 

equation, ~ + (26+6*) ^ , becomes = 0, so that 0^ = 

PU 
If H is assumed equal to H , 6* = ô*. Now, 6*, U and ô§, U would be 

A L 35* C C L gg* 

known so that the derivative could be calculated as içr— = ——— • 
SKg %B-%C 

Because values at A are equal to those at C, they can be substituted to 
95* 5* — 6 * 

obtain f 77— , which should be adequate if the distance from A to 

B is small compared to the entire chord length. In some cases where 

dU 36 * 
—— is small, may be positive. This is not acceptable or realistic 
ds 0I-' 

s 
as seen in Figure 12. If the viscous and inviscid lines do not have 

slopes of different sign (i.e., a negative slope for the viscous line and 

a positive slope for the inviscid line) then the intersection of these 
9Ô* 

lines will not be realistic. When ^ is positive. Equation 22 is not 
s 

used. A6* is calculated as one-half the difference between the latest 
s 

calculated and latest injected displacement thickness, and the remaining 

set of equations are solved for ^ knowing this àô*. 
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C 

0.8  

19.2 

79.0 

m/s 

18.8 

18.7 

0.0105 

0.0095 
0.99 0.98 1.00 

c 

Figure 20. Modified velocity and boundary layer diagrams used to 
calculate 3ôg/3U from an intermediate calculation for 
the 65-(12)10 blade cascade calculation correspond­
ing to the point a = 14.2° in Figure 28. 



www.manaraa.com

57 

The result of the interaction calculation is a value for A6* and 

Ag . The new injection and outlet angle are calculated from the 
U , 1 

previous values by adding one-half of this predicted change, thus intro­

ducing some damping. The new injected displacement thickness distribu­

tion is calculated as 

Ô* 6* 
6* = (0.6 5* . + 0.4 )(1 + . (26) 

''(l)te '(2) te 'te 

0*^^ is the previous injected displacement thickness distribution and 

0*2) is the newly calculated displacement thickness distribution. 

^(l)te *^(2) te respective trailing edge values and is 

the new trailing edge displacement thickness injection level just calcu­

lated from A6*. The first term of this formulation stabilizes the 
s 

distribution of 6* by making the new variation correspond to a weighted 

average of 0.4 the most recent 6* from the boundary layer calculation and 

0.6 the most recently injected 6*. The second term allows the displace­

ment thickness to vary considerably in the trailing edge region without 

affecting the boundary layer near the leading edge of the blade which does 

remain fairly constant from iteration to iteration. 

Calculation of losses 

Downstream of the trailing edge it is desirable to know the total 

pressure loss and the downstream flow angle. Knowing the boundary layer 

parameters at the trailing edge on the suction and pressure surface and 

the downstream outlet angle in the inviscid calculation and using the 

methods of Lieblein and Roudebush (1956) for incompressible flow and 
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Stewart (1955) for compressible flow one can calculate the total pressure 

loss coefficient and the outlet angle for complete mixing. To obtain the 

2 3 
experimentally measured loss parameter C^, where = 26^ cos 3^/cos S^/c, 

9 must be known as a function of s downstream of the trailing edge. For 

wake flow, = 0 and the Von Karman, integral equation becomes 

+ (2+H) = 0. Then using a correlation for the variation of H in 

the streamwise direction and the conservation of mass, 6 can be obtained 

as a function of s and C calculated (Appendix D). 
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SELECTION OF EXPERIMENTAL CASCADE DATA 

FOK TI'ST CASE COMPUTATION 

In the past 30 years a large number of airfoil cascade tests have 

been run. Because many were to obtain data on a particular phenomenon, 

the measurements were taken only in the areas of interest and the rest 

of the flow field was not investigated. This means that there are data 

on many specific phenomena, but there is a lack of data describing the 

entire flow field. Criteria for the acceptability of cascade data 

for this research will then be presented and useful data will be selected 

on this basis. Mention will also be made of flow field quantities which, 

if measured, would greatly benefit cascade flow computation in the future. 

The necessary measured parameters in cascade flow are of two types, 

independent and dependent,. Acceptable cascade data for the present work 

includes measurements of the following dependent and independent quanti­

ties. The independent quantities include the inlet mach number, inlet 

Reynolds number, inlet air angle, inlet turbulence, the fluid, the 

geometry of the blade-to-blade passage and the value of the local-to-

inlet axial velocity density ratio through the cascade. The necessary 

dependent or measured quantities include a turning or outlet angle, a 

measure of total pressure loss, and the pressure distribution on the 

blade surfaces. In addition there are certain quantities, not usually 

measured, which would be of great value in cascade flow computation 

development. These are as follows. The values of the boundary layer 
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displacement and momentum thicknesses along the blade surface are es­

sential. Regions along the blade of particular interest are the leading 

edge (so that good starting conditions can be used for the boundary layer 

calculation), the regions of transition or laminar separation (so that 

these may be modeled accurately), the regions of turbulent separation, the 

region near the trailing edge, and the wake. The area of the trailing 

edge is important because the pressure distribution in this region 

determines the outlet flow angle and measurements of static pressure and 

velocity (flow magnitude and direction) in this region would be of much 

help in modeling the trailing edge flow which is at present a large 

obstacle to accurate cascade modeling. 

Although the present model is able to calculate cases with axial 

velocity density ratios other than one^, it was felt that two-dimensional 

test cases would be best because they would probably point to the 

sources of flaws in the modeling and because the majority of the data for 

which the axial velocity-density product was controlled were two-

dimensional. The acceptable data from which test cases were selected are 

given in Table 3. From Table 3 three blade sections, 65-410, 65-(12)10, 

and 65-(12A2lg^) were chosen. The 65-410 blade section was selected 

because in addition to the data of Herrig et al. (1957), data from 

Peterson (1958) provided boundary layer information at three angles of 

^The Katsanis and McNally (1969) program includes the useful feature 
of being able to vary the axial velocity-density product and the axially 
symmetric stream surface radius as functions of the meridional distance 
through the cascade. 
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Table 3. Two-dimensional cascade data 

Reference Re xlO"^ M, 
c 1 

Blade Type 

Briggs (1952) 
NACA TN 2649 

3-10.4 .12-.89 65-(12)10 

Dunavanc, Emery, Walch, 5.5 
and Westphal (1955) 
NACA RM L55I08 

Erwin, Savage and 
Emery (1956) 
NACA TN 3817 

Emery and Dunavant 
(1957) 
NACA RM L57H05 

4.4 

• 3— 

.156 

3.46 .156 

1.5-5.3 -.1 

.3-.7 

65-(12A^q)10 

65-(12A2lgt)10 

65-(4A,I_.)10 
65-(8A:l!*)10 
65-(12Â,;%,)10 
65-(18A2lgplO 

65-(12A I )10 
65-(12A^OlO 

0 4 

65-(12A2lgt)10 

65-(12A )10 
65-(15A^:)10 
65-(18A;:)10 
65-(21A^:)10 
DCA 

Felix and Emery 
(1957) 
NACA TN 3937 

2.3 -.1 65-(12A „)10 
10C4/30CD0 

Herrig, Emery, and 
Erwin (1957) 
NACA TN 3916 

2.45 -.1 65-010 
65-410 
65-810 
65-(12)10 
65-(15)10 
65-(l8)10 
65-(21)10 
65-(24)10 
65-(27)10 

Speidel and Scholz 
(1957) 
VDI-Forsch. 464 

1.6-4.8 -.1 

5.0 .12 

65-(12)10 

0010 
8410 
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— o Parameters Measured 
si AB Loss C Boundary Layer 

T7Ô 45 Ï Y Y Y N 

1.0 45 
1 Y Y Y 

1.5 60 
N 

1.0 30 
1.5 45 1 Y Y Y N 

60 

1.0 45 
1.5 60 1 Y Y Y N 

1.0 60 1 Y Y N N 

1.5 25 
1.25 35 1 Y Y Y N 

45 

30 
1.0 45 1 Y Y Y N 

60 

.5 30 

.75 45 
1.0 60 1 Y Y Y N 
1.25 70 
1.50 

1.0 1.5 45,60 1 Y Y N N 

2.0 +30 
1.33 +60 1 Y Y Y N 
1.0 90 

. 8  
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Table 3 (Continued) 

Reference Re X 10 
c: 

-5 

Dunavant and Emery 
(1958) 5.-1.7 .3-1.0 
NACA RM L58A02 

Milsch (1971) 4.3 .11 
Germany 

Blade Type 

65-(8A n)10 
65-(4A,:)06 
65-(8A^q)06 

65-610 
65-(12)10 
65-(12)06 
65-(18)10 
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_c o AVDR Parameters Measured 
s i ~ÂB Loss Boundary Layer 

.6 Constant 

.8 Y 1 Y Y Y N 
1.0 y=40,50 

.75 
1.0 50 1 Y Y Y N 
1.25 
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attack on both sides of the blade. The 65(12)10 blade was chosen be­

cause low speed and Reynolds number data were available from Herrig et al. 

(1957), boundary layer data were available from Milsch (1971), and high 

speed data were available from Dunavant et al. (1955). Finally, the 

65-(12A I )10 blade was chosen because low speed and Reynolds number 2 od 
data were available from Erwin et al. (1956) and high speed data were 

available from Dunavant et al. (1955). 

The cascade data previously mentioned, Herrig et al. (1957), 

Erwin et al. (1956) and Dunavant et al. (1955), were taken at a constant 

inlet angle and the angle of attack was changed by varying the stagger 

angle. This means that the inlet flow was held constant and the geometry 

of the blade passage was changed. This type of situation is very hard 

to simulate with the inviscid program used in the present model because 

blade coordinates for each new geometry must be calculated and then 

adjusted so as to have a smooth curvature distribution along each blade 

surface. Since an inordinate amount of time would be spent merely 

generating geometries, it was most expedient to select a stagger angle 

which fell in the center of the stagger angles of the experimental data 

and set the blade at that angle thus fixing the geometry. Then the inlet 

angle in the calculations would vary as the stagger varied in the 

experiments so that the two could be compared by angle of attack. 

Though there will be differences between data taken at constant stagger 

angle and constant inlet angle, when compared by the incidence angle, 

this type of comparison should be acceptable for small perturbations 

about a point where the stagger angle, the inlet angle, and the angle 
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of attack, are the same. 'II ic blades seJecLcd nre Che 65-410, the 

65-(l2)10, and the 65-(12A,I )10 as shown in Figure 21. These blades 
od 

were each used in one cascade configuration as follows: 65-410, y = 

45.0 degrees, O = 0.78; 65-(12)10, y = 45.7 degrees, a = 1.0; and 

65-(12A )10, y = 45.3 degrees, a = 1.0. The calculation regions and 
2 od 

mesh sizes for each cascade are given in Figure 22, 
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55-410 BLADE; y = 45 degrees, a = 0.78 CASCADE 

65-(12)10 BLADE; y = 45.7 degrees, a = 1.0 CASCADE 

eS-ClZA^Ig^) 10 BLADE; y = 45.3 degrees, a = 1.0 CASCADE 

Figure 21. The three cascades used to test the present model 
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65-410 cascade 

L/ 
fn-j ̂  ni2 _»!«. nis^ 

1 

= 

= 

a = 

35 MESH LINES 

0.1588 m 

0.5209 ft 

0.78 

= 20 nig = 25 "3 = 20 mesh lines 

= 0.07038 = 0.08797 = 0.07038 m 

= 0.2309 

m-j = 0.568 

mg = 0.2886 

= 0.710 

= 0.2309 ft 

mg = 0.568 

T 
65-(12)10 CASCADE^ ®1 

e 
1 

percent chord 

= 35 MESH LINES 

= 0.127 m 

O-j = 0.4066 ft 

a = 1.0 

25 

^ iTig 

rio = 25 mj = 18 

= 0.08739 = 0.08739 = 0.0629 

m, = 0.2867 

= 0.705 

= 0.2867 

mg = 0.705 

m. 

mesh lines 

m 

= 0.2064 ft 

65-(12A,Ipk)10 

cascad" 

= 0.508 percent chord 

= 25 MESH LINES 

L/" 

1 "1 
0-] = 0.124 m 

t_ e-j = 0.4066 

a = 1.0 

.m 
i4-"'24-"'3H 

= 30 

în-] = 0.1044 

= 0.3426 

= 0.843 

= 25 ms = 25 mesh lines 

mg = 0.08702 = 0.08702 m 

mg = 0.2855 

= 0.702 

nig = 0.2855 ft 

mg = 0.702 percent chord 

Figure 22. The calculation regions and mesh sizes used in the 
TSONIC program for the three cascades tested. 
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DISCUSSION OF RESULTS 

After determining the blade sections and their particular test condi­

tions, calculations were made using an Univac 1100/42 computer with input 

as specified in Table 4. Because of the long run times for the program 

(one to two hours), many intermediate values were printed at each itera­

tion to permit evaluation of the internal consistency of the program. The 

results of the calculations for each blade section and flow condition may 

be compared with the available experimental data to determine which parts 

of the model are producing real physical effects and which are not proper­

ly modeling the flow. General weaknesses of and possible corrections for 

viscous-inviscid interaction schemes and general insights into the 

inviscid-viscous interaction phenomenon will also be discussed. 

65-410 Blade Cascade 

The turning, loss and suction surface transition and separation points 

plotted against the inlet angle for the 65-410 blade cascade are shown 

ii. Figure 23. The two calculations (1 and 2) shown differ only by the 

s step size used on the last one-half of the blade. Calculation 2 uses 

the same step size in the boundary layer as all other calculations in 

this work, while calculation 1 uses a larger step size. Notice 

that up to a = 18° the two calculations show very good repeatability. 

The calculated turning, AS, has a slope which is quite similar to 

the experimental data and levels off at the same place the experimental 

data does. This decrease in turning also occurs near the point 

where laminar separation and bursting occur in the model. However, 

the levels of turning between the experimental data and the 
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Table 4. Independent cascade variables for each test case 

Test Case 

Inlet 
Mach 
Number 
^i 

Inlet 
Reynolds 
Number 
Re^ 

Angle of 
Attack 

a° 

Inlet 
Turbulence 
Intensity 
Tu 

Axial 
Velocity 
Density 
Ratio 

65-410 Cascade 

Low Speed 0.1 245,000 9.3% 12.4° 
15.0°, 16.0° 
17.0°, 18.0° 
19.0° 

0.005 1.0 

65-(12)10 Cascade 

Low Speed 0.15 430,000 12.5° 0.0005 1.0 

0.1 245,000 14.2°, 17.7° 
19.2°, 20.7° 
21.7° 

0.005 1.0 

Reynolds 
Number 

<0.1 150,000 
220,000 
350,000 

12.0° 0.005 1.0 

High Speed 0.3, 
0.5 
0.7 

8.7x10* 
2.0x10° 

14.3° 0.005 1.0 

65-(12A2lg^)10 Cascade 

Low Speed 0.1 440,000 10.6°, 12.5° 
14.7°, 16.7° 
18.7° 

0.005 1.0 

Reynolds 
Number 

<0.1 450,000 
350,000 
275,000 
200,000 

9.6° 0.005 1.0 

High Speed 0.3, 
0.5, 
0.7 

9.0x10*-
2.2x10 

11° 0.005 1.0 
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calculation differ by about two degrees. The calculated loss coefficient 

is too high at low angles of attack and not high enough at high angles of 

attack. Although at high angles of attack the calculated and experimental 

loss coefficients do not match, they both show the same trend of a rapid 

increase with a small change in angle of attack, which occurs after the 

point of laminar separation and bursting. The points of transition and 

turbulent separation also shoi-m drop dramatically near the point of 

laminar separation and bursting. This is to be expected, because as 

the inlet angle is increased, the pressure gradient on the suction 

surface gets steeper and the transition point moves forward until the 

gradient is so steep that laminar separation occurs. The computation 

time for the seven incidence cases run consecutively was 2.03 hours. 

Figure 24 shows the convergence of the calculations for the 

65-410 blade. All of the calculations were done so that the converged 

solution from the previous inlet conditions is used as the starting point 

of the calculation of the next inlet conditions. U -U is the difference 
s p 

in the viscous surface velocities on the suction and pressure surfaces 

and indicates the degree to which the trailing edge pressures are equal. 

5* -S* is the difference in the injected suction surface trailing edge 
inj calc 

displacement thickness and suction surface trailing edge displacement 

calculated from the boundary layer equations and indicates the degree to 

which the two displacement thicknesses are equal. Finally, S . is the 
0» -L 

angle at the downstream boundary of the inviscid calculation. All the 

calculations converged except for a = 18°, which did not converge in 8 

iterations. Observe in the a = 18° calculation the large oscillations in 
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Figure 24. Convergence of the calculation for the 65-410 blade cascade. 
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6* .-6* - which are caused by the boundary layer flow alternating between 
inJ calc 

transition, laminar separation and laminar bursting. 

The next three figures show the surface pressures and the displace­

ment and momentum thickness on the suction and pressure surfaces for 

three different angles of attack. When a = 9.3°, as shown in Figure 

25, the surface pressures match well with the experimental data, the 

pressure surface boundary layer also shows fair agreement with experi­

mental data, but the suction surface boundary layer shows substantial 

disagreement with the experimental data. The starting boundary layer 

could have been too thick, since 6* and 6 don't match the data at X/c = 

0.2 or the velocity gradient near the trailing edge (greater than X/c = 

0.8) on the suction surface could have been steeper than the actual 

gradient. Figure 26 shows that for a = 12.4° the surface pressures match 

well with experiment and that separation is beginning on the suction 

surface. Although convergence could not be obtained at a = 18°, because 

the boundary layer calculation alternated between transition and laminar 

separation from iteration to iteration, it was obtained at ct = 19°, 

because laminar separation near the leading edge was calculated at each 

iteration. The calculation at ex = 19° was compared with the data of 

Herrig et al. (1957) at a = 18.1° and Peterson (1958) at a = 20° in 

Figure 27. Though the suction surface pressure peak seems to match, the 

surface pressure near the trailing edge are quite different from the 

experimental data. The suction surface boundary layer seems to match 

fairly well though the momentum thickness is a little low and the dis­

placement thickness is high. It is also seen that the flow underwent 
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data and calculated suction and pressure surface boundary 
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laminar separation and continued as a turbulent separated boundary layer, 

which means chat the flow over most of the blade is separated. 

65-(12)10 Blade Cascade 

The turning, loss, and suction surface transition and separation 

points plotted against the inlet angle for the 65-(12)10 blade cascade 

are shown in Figure 28. The calculated turning, AB, has a slope which is 

similar to the data, but the level of turning is not the same and at 

high angles of attack the turning does not decrease. The loss 

seems to be at about the right level, but there is no rapid increase in 

C^. The transition point moves forward with increasing incidence as 

expected and the separation point does so also. There is no laminar 

separation on the suction surface in any of the calculations and this may 

be the reason there is no sudden increase in the displacement thickness 

with the corresponding increase in and decrease in A6- The computation 

time for six incidence cases run consecutively was 3.28 hours. 

The convergence of the calculations for the 65-(12)10 blade are 

shown in Figure 29. The calculations at the incidence angles, a = 

12.5°, 17.7°, and 20.7° converged while those at a = 14.2°, 19.7°, and 

21.7° used all eight iterations but all were in the process of converging 

and appeared to be close to convergence. There seems to be a general 

trend of increasing ^ with increasing a. The values of incidence 

a = 12.5°, 14,2°, and 17.7° shows this as does Figure 24. However, at 

a = 19.7°, 3^ J decreases. This is probably caused by an increase in 

the boundary layer thickness which causes the interpolation scheme to use 
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a different set of four points to obtain the surface pressures. This 

might produce such a jump, because there may be large variations in 

velocity from point to point in this region. This is not desirable be­

cause it produces an increase in turning when a decrease should be 

obtained. Surface pressure data are available at three different angles 

of attack, 14.2°, 17.7° and 21.7° from Herrig et al. (1957) and surface 

pressure and boundary layer data are available at a = 12.5° from Milsch 

(1971). The data of Milsch (1971) are taken at a slightly higher Mach 

number and contains information about the surface pressure and momentum 

thickness on both sides of the blade. Figure 30 shows the comparison of 

the calculation with the data after Milsch (1971) . The surface pressures 

seem to be shifted, the calculation being lower than the experimental 

data, though the shapes seem to be about right. The calculated suction 

surface momentum thickness probably grows much more rapidly than the data 

because of the increased diffusion on the suction surface of the calcu­

lation over the experimental data. But the pressure surface momentum 

thickness seems to match quite well. 

Figure 31 shows that for a = 14.2° the surface pressures match 

quite well with the data. At a = 17.7°, Figure 32 shows that the experi­

mental and calculated surface pressures match fairly well. However, 

at the trailing edge the calculation diffuses the flow too much. Also, 

the pressure surface boundary layer and surface pressure has a hump as 

a result of the laminar separation on that surface. At a = 21.7°, 

Figure 33 shows that although over the leading edge portion of the blade 

the surface pressures match, at the trailing edge there is too much 
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Figure 31. Calculated surface pressures compared with experimental 
data and calculated suction and pressure surface boundary 
layers. 65-(12)10 blade, = .1, Re = 245,000, a = 1.0, 
y = 45.7°, c = 124 mm. ^ 
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Figure 32. Calculated surface pressures compared with experimental 
data and calculated suction and pressure surface boundary 
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diffusion and again there is laminar separation on the pressure surface. 

Observe also, Llie movement of the turbulent separation point toward llu-

leading edge in these last three figures. 

In addition to these angles of attack, one higher angle, a = 22.7°, 

was run for several iterations. Though it did not converge, it yielded 

some useful information. With an increased incidence angle the velocity 

peak from a = 21.7° to a = 22.7° remained almost the same and there was 

no laminar separation predicted. This suggests that it is important to 

correctly model the peak velocity on the suction surface to determine if 

there is any laminar separation. 

The turning and loss for varying Reynolds numbers for the 65-(12)10 

blade is given in Figure 34. The data were taken at Tu = 0.01 by Herrig 

et al. (1957), but when calculations were made at that value, the first 

point (Re^ = 350,000) did net quite converge and the last point (Re^ = 

150,000) was not converging because the laminar separated region was 

oscillating between transition-reattachment and bursting. When the calcu­

lation was made at Tu = 0.005, the values for the turning and loss obtained 

are those in Figure 34. When the calculations were performed for Tu = 

0.005, at Re^ = 350,000 the boundary layer underwent normal transition, 

at Re^ = 220,000 it separated and reattached and at Re^ = 150,000 

bursting occurred. The trend of decreasing AB and increasing with 

decreasing Re^ is shown correctly, though overestimated. The computation 

time for the four Reynolds number cases was 1.32 hours. 

Figures 35 and 36 show the high speed test for the 65-(12)10 blade. 

The points of transition and separation shown in Figure 35 both move 
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forward as the Mach number is increased. The turning does match well at 

= 0.3, but does not follow the trend of the experimental data at high 

Mach numbers. The loss, though near the correct level, does not match 

the experimental data. The surface pressures in Figure 36 show that at 

= 0.298 the calculated pressures match the experimental pressures 

well, even near the trailing edge. At the higher Mach numbers there is 

a significant difference in the calculated and measured pressures, 

especially near the trailing edge, but the suction surface peak is almost 

duplicated in all three cases. The computation time for the three -Mach 

number cases was 1.23 hours. 

65-(l2A2lgy)10 Blade Cascade 

The turning, loss, and transition and separation points plotted 

against the angle of attack for the the 65-(12A2lg^)10 blade cascade are 

shown in Figure 37. Again as in the previous cases, the slope of the 

calculated AS is similar to the data but the levels are not the same and 

as in the 65-(12)10 case, AS does not decrease as does the data at high 

gles of attack nor does increase at high angles of attack. The 

transition location moves forward as would be expected but no laminar 

separation is calculated. The turbulent separation line remains almost 

horizontal probably because of the shape of the suction surface pressure 

distribution near the trailing edge. The computation time for the five 

incidence cases was 2.06 hours. 

The convergence of the calculations for the 65-(12A2lg^)10 blade is 

displayed in Figure 38. Convergence is obtained in a = 12.5°, 14.7®, 
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and 18.7° while a solution was being converged upon in a = 10.6° even 

though the iteration limit was exceeded. However, for a = 16.7°, there 

appears to be some difficulties in converging. Also, as seen before, 

6 ^ in general increases as a increases. 
o ,I 

Surface pressure calculations are compared with the available data 

at A = 10.6°, 12.5°, and 14.7°. Figures 39 and 40 exhibit good agreement 

of the calculated and measured surface pressures. The separation point 

remains almost constant probably because the pressure remains nearly-

constant on the suction surface and then increases very rapidly near 

the trailing edge almost insuring separation. NOT-.- at a = 14.7°, Figure 

41 reveals that the calculation did not duplicate the suction surface 

velocity peak, and as a result there was no laminar separation near the 

leading edge and no large increases in the momentum thickness which should 

occur at high angles of attack. 

The turning and loss for various inlet Reynolds numbers are.shown 

in Figure 42. The exact turbulence level for this case is not known and 

Tu = 0,005 was used as input to the calculation. However, though the 

levels of AB and are off somewhat, the right trend is shown and 

bursting is predicted at Re^ = 200,000 where the data is growing 

rapidly. The computation time for the four Reynolds number cases was 

1.28 hours. 

For the high speed test cases. Figure 43 presents the turning, 

loss, and the transition and separation points. Although each of the 

three calculated cases converged, there seems to be little explanation 

as to why A3 does not match at M. = .306 while C does and why Ag matches 
X w 
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at M. = .755 while C does not. The corresponding surface pressure 
i w 

diagrams are given in Figure 44. At = 0.306 the surface pressures seem 

to match fairly well. At higher inlet Msch numbers the surface pressures 

do not match as well and at = 0.755 the transition of the boundary layer 

near X/c = 0.4 seems to have caused some oscillations in the suction 

surface velocity. The computation time for the three Mach number cases 

is 1.42 hours. 

Matching Actual and Calculated Flow Fields 

The object of the present research has been to model as closely as 

possible the real flow on a blade-to-blade axially symmetric surface. 

After looking at the previous comparisons of experimental and calculated 

data, it is assumed that some part or parts of the model are inadequate. 

When using an inviscid flow calculation with injection, as in the present 

model, one intends to predict a flow in the region where the flow is not 

dominated by viscous forces, that is the same as the experimental flow 

field in the same region. However, Figures 27 and 33 show that even 

though the proper amount of injection is applied (i.e.. Figure 27 the 

displacement thicknesses are nearly the same and in Figure 33 the loss 

is nearly the same) the calculated surface pressures near the trailing 

edge are higher than the experimental values. Figure 45, a plot of constant 

pressures in terms of velocities, also shows that on the suction surface 

the measured pressure (in terms of velocity) , U = 98, does not match the 

calculation for the same injection and outlet angle. In all three cases 

the measured surface pressure is lower than that calculated (the velocity 
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Figure 44. Calculated surface pressures compared with experimental 
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was higher). This could possibly be a result of not calculating an in-

viscid flow field which is the same as the real flow field in the region 

not dominated by viscous forces. These two may not match because of the 

way the inviscid periodic boundary conditions downstream of the blade are 

set and the way in which the pressure is calculated through the boundary 

layer and wake. 

In Figure 46 imagine that A and B are the boundaries between the 

viscous dominated and nondominated regions and that the solid line is the 

real static pressure through the viscous layer. Now, if the flow fields 

outside of A-B are matched, the static pressures of the real flow and the 

calculated flow are equal along A and B, the inviscid calculation within 

A-B does not necessarily have continuous pressure as does the real 

viscous flow. If the inviscid and the real viscous streamlines within 

A-B have somewhat the same shape (i.e., curvature) the normal pressure 
2 

gradient which can be calculated from will be larger for the 
oTi r 

inviscid flow than for the real flow as shown by the dashed line, because 

of higher velocities. This means that in general, there needs to be a 

pressure jump in the inviscid calculation along a line beginning at the 

trailing edge so that the real and the inviscid flow fields match in 

the region not dominated by viscous forces. It is also necessary that the 

displacement thickness in the viscous layer also be properly modeled in 

this region to produce a properly calculated flow field. Actually, the 

real viscous flow at the trailing edge is quite different from the inviscid 

flow calculated in the region between A and B. It appears essential that 

the inviscid flow be correctly calculated to obtain the correct pressures 
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at the edge of the viscous layer. 

In the calculation of real blade-to-blade flow on an axially 

symmetric surface, the following facts should be considered. First, 

accurate calculations in the trailing edge region are essential to obtain 

proper levels of turning. Second, if an inviscid-viscous model is used, 

great care must be exercised in the application of the boundary conditions 

to the inviscid flow in the region of the trailing edge and downstream. 

Finally, to obtain the proper pressure change through the viscous layer 

it is necessary to calculate the viscous flow field in that region. 

Boundary Layer Growth 

Although the calculated turning of the present model did not match the 

experimental results very well, in the case of the 65-410 blade at high 

angle of attack and the 65-(12)10 blade at low Reynolds numbers there was 

a significant increase in the suction surface boundary layer displacement 

and momentum thicknesses and the loss and a decrease in turning. These 

give insight into the nature of the boundary layer as it grows on the 

suction surface and the effect it has on the turning. Figure 47a also 

shows the different boundary layers for the 65-(12)10 blade at 3 different 

Reynolds numbers. The momentum thicknesses are basically the same until 

X/c = 0.4. However, after that point they begin to differ greatly. 

Figure 47b shows the growth of the momentum thickness on the 65-410 blade 

at three angles of attack compared with data. Notice that in both the 

calculation and the experimental data the size of the boundary layer 

differs considerably by X/c = 0.2. Figure 48 shows the boundary layer 
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experimental data and calculations for the 65-410 blade plotted against 

the angle of attack. This shows that for a small change in Incidence at 

high incidence there is a large change in the boundary layer. 

From the data alone it would not be particularly obvious why this 

sudden growth of the boundary layer takes place. However, the present 

calculation scheme gives some insight into the cause of the sudden growth. 

In Figure 47b the difference between the momentum thicknesses at X/c = 

0.2 of a = 9.3° and a = 17° is probably caused by the differences in the 

peak pressure coefficients on the suction surface. At a = 9.3°, the 

maximum C is 1.57 while at a = 17° it is 2.9. At a = 17° the boundary 
P 

layer still undergoes transition at X/c = 0.32 while at a = 19° laminar 

separation takes place at X/c = 0.03. The laminar separation causes a 

large increase in the momentum and displacement thicknesses across the 

separated region. This can be seen by observing the equations used to 

model the separated region. Equations 14, 15, 16, and 17. Using the 

ratio, U , of the reattachment velocities and the separation velocity, 
r 

U = U /U as a measure of the suction surface velocity gradient 
^r ®r ^sep _ 
near the leading edge. Figure 49 shows that as decreases (i.e., the 

suction surface velocity gradient becomes steeper) grows 

rapidly. 
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Figure 49. The increase in momentum thickness through a laminar 
separated region after equations from Roberts (1974). 
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Effect of the Suction Surface Boundary 
Layer 

In the test cases where the boundary layer displayed the type of 

behavior as in Figure 47 and 48, the turning, AB, showed a decrease 

(Figures 23 and 34). Knowing this and looking at the interaction equations, 

the beginnings of a relationship between the injected suction surface 

displacement thickness and the change in turning can be shown. Equations 

23, 24, and 25, become Equations 27, 28, 29. 

(27) 

(28) 

U + AU = U + A^ 
p p s s (29) 

Let U s S-

Therefore 

AU = AU 
P s (30) 

Combining Equations 27, 28, and 30 

0,1 SB 

au 
s 

o,I 

s u  
s 

Solving for AB _ in terms of Aû* . and the derivatives, one obtains 
o,I inJ ,s 
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36* 

^^o,I " W 3lj~ 

~ 3ë~7 0,I OjJ-

From numerous calculations done by the author not mentioned in this work 
au su 

and in agreement with Dodge (1973), and — are considered nearly 
3Ug 3Go,I 3Go,l 

constant, is also considered a constant though it will decrease as 
s 

5* . increases. Therefore, the change in the inviscid outlet angle is 
> s 

nearly proportional to the change in suction surface displacement thick­

ness. This is shown to be true in Figure 50. The calculated points, are 

chosen at intermediate calculations when and U^ were approximately 

equal, though the boundary layer thicknesses may not yet be converged. 

The solid lines show the general trend of these points and the dashed 

lines show the slope in Equation 31, using values of the derivatives from 

the interacted calculations. For the 65-410 and the 65-(12)10 blades at 

5* . /c > 0.05 there are points which do not correspond to the straight 
5 S 

portion of the graph. Part of the decrease in slope might be attributed 
3U 

to the decrease in slope of and the rest of the decrease is probably 
s 

caused by the way the surface pressure is obtained from the interior 

velocity field using different sets of four points as 0*^^ ^ grows. 

The outlet angle, 3q, also increases because of mixing downstream 

of the trailing edge. Figure 51 shows the change in the outlet angle 

S -6 as a function of (ô*-6 )/s where the points are calculated from 
o o,I s te 

typical values of 5* and 9 during the solutions for all three blade 

shapes. 
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Now, knowing to some extent, the way the two previously explained 

mechanisms increase the outlet angle, it is possible to calculate the 

outlet angle if the suction surface displacement thickness is known, using 

the form 6 = mô* + S . In Figure 52 the turning is calcu-
o s o , intercept 

lated from the outlet angle determined from the previous equation. 

The values of 6* used are obtained by estimating H (H = 1.4 if is 

small to H = 2.0 if C is large) and calculating 0 from C by 
C cos^S " ^ 

0 = c. The slope m is obtained from the slopes of the graphs 
cos 

on Figures 50 and 51. Then using the value of at the point marked 

by the arrow in Figure 52, B . is obtained. Then and AB o,intercept o 

can be calculated and compared with the actual data as shown. Though A3 

is underestimated at the highest a's, the results show fairly good agree­

ment. 

In light of the evidence that there is some sort of relationship 

0 between B and 5*, AB is plotted against — ^ from experimental data 
o  s o  l  c o s  

for all the three blade shapes used in this work, in Figure 53, where 

has calculated from C and AB is the increase in deviation from 
t cos B w o 

the minimum loss point to the higher loss points. To some extent, 

Figure 53 suggests that there may be a relationship between AS^ and 6* 

similar to the solid line, which initially has a large slope that 

decreases as 6* grows. 
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CONCLUSIONS 

The results of this work suggest that: 

1. To calculate accurate cascade fluid outlet angles an inviscid 

solution is not adequate in itself. An inviscid calculation must 

be supplemented by at least an interacting viscous calculation. 

2. The viscous calculation must provide for laminar, laminar 

separated, transitional, turbulent, and turbulent separated 

flows. 

3. To model laminar separation, the leading edge velocity distribu­

tion (obtained from the inviscid solution) must be accurately 

calculated, particularly the magnitude of the peak velocity. 

4. The static pressure distribution across the viscous layer in a 

direction normal to the streamlines is continuous but not neces­

sarily constant. The modeling of the pressure difference across 

the viscous layer is necessary for the determination of the 

outlet flow angle. 

5. To use an inviscid-viscous method to accurately determine fluid 

outlet angles, the calculated inviscid flow must match the actual 

flow outside of the viscous region. In general this requires a 

pressure jump in the inviscid flow across a line such as a wake 

centerline. 

6. The combined inviscid-viscous interaction system developed here 

yields results for both turning and total pressure loss charac­

teristics which are quantitatively consistent with the results 
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of selected experimental test cases. This suggests that the 

physical basis for the interactive system is correct and should 

justify further exploration of the use of the method. This 

exploration should include the acquisition of additional test case 

experimental data. 
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SUGGESTIONS FOR FURTHER RESEARCH 

As the present work is being finished there is continued work in the 

area of cascade modeling. However, in view of the research just presented, 

work on cascade modeling would probably be most profitable if pursued in 

the following manner. First, measurements of static pressure and 

velocity (magnitude and direction) are needed in the trailing edge region. 

Second, measurements of the boundary layer growth along the blade are needed 

to find the cause of the rapid growth of the boundary layer at high inci­

dence angles. Finally, when there is sufficient data available to help 

construct workable models of the flow (i.e., a model at the trailing edge 

to fix the outlet angle and a model of the boundary layer which accu­

rately predicts the rapid increase in thickness at high incidence angles) 

then an entire cascade model should be attempted. Also, as data is 

available, effort should be spent investigating the relationship between 

the fluid turning angle and the size of the suction surface boundary 

layer displacement thickness. 
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APPENDIX A: MASS ADDITION BECAUSE OF THE 

TRAILING EDGE THICKNESS 

From the geometry in Figure 54, 

Knowing 1 = P''*modlfled_ 

" 'modified ®o,I 

t , is the pitch minus the trailing edge thickness blockage in the 
modified rs \ fx \ 

) (Ace)-
0 direction, t = t = . The mass addition on 

' modiried cos 6 _ cos B , 
o>I o,I 

the suction surface is 

A» 
= n "">3 "té'n , 

cos 6 T cos 6 _ o,I o,I 

The mass addition on the pressure surface is 

"t.). 

A* 

COS g ^ COS B T 
o,X o,i 

Therefore at the trailing edge on the suction surface 



www.manaraa.com

1  29  

TRAILING EDGE 
VERTICAL MESH LINE 

Figure Geometry of the trailing edge radii. 



www.manaraa.com

130 

and on the pressure surface 

uobô* uobô* 
=  1  +  — ^ w h e r e  — ^ —  i s  t h e  c h a n g e  i n  b o u n d a r y  

conditions because of the injected boundary layer displacement thickness, 
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APPENDIX B: CALCULATION BEYOND THE FAILURE OF 

THE BOUNDARY LAYER METHOD 

In a separated region, after the boundary layer calculation procedure 

has failed at the momentum and displacement thicknesses are calcu­

lated as follows. 

The Von Karman integral equation in a separated region, = 0, is 

U^ + (2+H)6U 4~ = 0, which also is 
ds as 

ii = _ (2™) 8 ^ 
ds U ds 

Then using finite differences. 

Let 

!£!1- 2 02^1 ^2-^1 

Sg-Si 2 2 S2-S1 

H U -U 
6^-6^.-1(2+-^) ̂(02+6^)1. 

H « U -U 

Ig-Gi = -5(82+8^) 

e^ci+B) = e^(i-B) 

^2 = 

H is estimated by setting + 1 and linearly interpolating 

at s between s an s , Then knowing H, 8 = Q C"^^), where 
XâlX u0 z ± 
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H2+Hi U^-U^ 
B = (2 H —) ) , is integrated at the s steps beginning from the last 

boundary layer calculation station to the trailing edge. The displacement 

thickness is obtained from 6* = ^2®2" 
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APPENDIX C: CALCULATION OF VISCOUS SURFACE VELOCITIES 

Assume, that for the purposes which follow, a velocity profile of the 

following type is adequate, 

f- = 
e 

Then 
r<5 

6* = I (1 - —">dy 
•' 0 e 

6* = - (f)'')d(|) 

(̂1 - g-)dy 
0 e € 

= 6 

6 = 4 tTTT - -crrl " " ••n+l 2n+l^ (n+l)(2n+l) ' 

H = -^ = 2n+l and 6 = 6* • 
y n—1 

The velocity at point B in Figure 17 is extrapolated from the flow 

solution points according to Figure 55. First, linear interpolations 

are made between the value of the velocity at points 2 and 3 to obtain 

6 and 1 and 4 to obtain 5. Then the values at 5 and 6 are linearly 

extrapolated to B and the edge velocity is found. 
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The mesh points used to obtain the pressures 
point B and point A. Also see Figure 17. 
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The curvature of the streamline at B is calculated as follows knowing 

that 

2 3p 
Pu K = ̂  . 

For compressible flow 

2 1 
U 

^ _ oe . k-1 
P P 2c TO 

P 

U ^ 

p 

R = c (k-l)/k. 
P 

Therefore K = ^ ^ becomes 
pu/ 

, , U ^ rÂr U 3U 

e p p 

^ k ,, &LA 
I°pu/ Cp(k-l) ' 2CpTo) 2„ 

" Ug 3n " 

The pressure across the viscous layer is calculated from 

<Pu^ = as follows, 
dri 

rP_ fS 2 

(32) 

= dp = J KPu'dy 

s 0 
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P^-Pg = <pu/ 

FL-P_ = 
<pU ^6 KpU ^5 

e e 
e s 2n+l H 

Zi = 
p° p° p°H 

Substituting 

^ " W~r U ^ ^ KpU ^6 
(1 ) = (1 S 1 Ê 

2«=pT° 2Cpf Hp° 

u ^ u ̂  ^ <pu ^6 k=l 

1 - = (CI - - —V) ̂ = B 
2c T 2c T Hp 
P P 

u' 
— = 1-B 
2c T° 
P 

;• 

U = ''2c T°(l-B) 
S p 

u ^ KpU 6 ̂  
U = 2c T (1-((1 ~) ^ ) • (33) 
= P 2CpT° Hp° 

Then the value of < is obtained from Equation 32 using the average 

derivatives in the meridional and tangential directions from the value 

at the four mesh points in Figure 55 and , the viscous surface velocity, 

which corresponds to the viscous surface pressure can be calculated from 

Equation 33. 



www.manaraa.com

137 

APPENDIX D: CALCULATION OF IHE WAKE FLOW 

u —u 
Spence (1954) gives —^—— = 0.1265 __ for airfoils, but 

e (.025 +"I)' 

the data of Raj and Lakshminarayana (1973) suggest" the correlation 

Ug-U Q3 
—^ ! , If the velocity distribution through the wake is 

te 
U -U 

given by a cosine curve then H = 1/(1-.75(—g—^)). Therefore 
e 

= 1/(1".7725//I.46 + s/e^g) 

and 1.46 can be replaced by a constant d, which is evaluated when 

Hs = Hte and s = 0, d = (.7725*H^g/(H -1))^. 

Figure 56 shows a control volume beginning at the trailing edge 

plane and extending downstream. Conservation of mass within that control 

volume, assuming the upper and lower boundaries are period gives. 

(t-5* /cos B )U ̂  cos S = (t-ô* /cos 3 )U, cos B • 
te o te o ds o as o 

Differentiating with respect to s it becomes, 

U cos B dU 
0 = - —— 5—— + (t-6*/cos B ) cos B ds cos g o ds o 

and 

__J= fds 
ds (t cos B -6* ) ds U, ' 

o ds ds 

In the wake T =0 and the Von Karman integral equation becomes 
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te ds 

Figure ')(). Control volume for the wake calculations 
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^ = _ (2+H)8 ̂  
ds U ds 

1 ^^ds 1 du 
substituting — for — and recognizing that all values of 0, iS*, 

ds 
and H are at the downstream plane. 

^ ̂ -(2+H)e d5* 
ds (t cos BQ-5*) ds 

Ê - (t^cos\-6x) (H + 8^) 

Let 

(24%) 
(t COS 6 -6*) 

o 

^ 

f (1+BJH) . -B^e f 

de ^ ^1® 
ds (1+B^H) ds 

d9 _ -9 dg^ 
ds " (1/B^+H) ds 

d6 _ -6 dH 
ds ~ (H+(t cos 8 -6*)/((2+H)e)) ds 

Using finite differences, 
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'2-®l _ ®1^2,__V]Î1 1 
o tj / 

if 

®2 ®1 ^ tçQS _ ^ave ^2"®1 

(2+Gave)8i"(2+Saya) 

2̂-̂ 1 
B-) - % 5 ïT 

cos o ave 

<2«ave>ei • a™ 

e +6 
«2-^1 - - -V"2> 

I^Cl+Bg/Z) = 0^(1-62/2) 

©2 = 0^(1-82/2)/(I+B2/2) 

Therefore, knowing 

d = (.7725*H^^/(H^^-1))^ 

H = l/(l-.7725//d+s/0^) 
s te 

02 = 6^(1-B2/2)/C1+B2/2) 

where 

B, = 
2 t cos 

• "«ave' a'" 
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